

### Mantle Cell lymphoma: Update on pathobiology



**Stefano A. Pileri** 



MANTLE CELL LYMPHOMA: NOW and BEYOND

**ROME** June 27, 2022

#### Disclosures of Stefano Pileri

| Company name | Research<br>support | Employee | Consultant | Stockholder | Speakers bureau | Advisory board | Other |
|--------------|---------------------|----------|------------|-------------|-----------------|----------------|-------|
| BeiGene      |                     |          |            |             |                 | x              |       |
| Roche        |                     |          |            |             | x               |                |       |
| Takeda       |                     |          |            |             |                 | x              |       |
| Diatech      |                     |          |            |             |                 | х              |       |
| Morphosys    |                     |          | X          |             |                 |                |       |

MANTLE CELL LYMPHOMA: NOW and BEYOND

ROME June 27, 2022

MANTLE CELL LYMPHOMA: NOW and BEYOND

ROME June 27, 2022



International Agency for Research on Cancer (IARC)

**Revised 4th Edition** 

### WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues

Edited by

Steven H. Swerdlow Elias Campo Nancy Lee Harris Elaine S. Jaffe Stefano A. Pileri Harald Stein Jürgen Thiele

MANTLE CELL LYMPHOMA: NOW and BEYOND

### **ROME** June 27, 2022







# KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma

| Patients                               | N = 68   |  |  |
|----------------------------------------|----------|--|--|
| Characteristics                        |          |  |  |
| Median no. of prior therapies (range)* | 3 (1-5)  |  |  |
| ≥ 3 prior lines of therapy, n (%)      | 55 (81)  |  |  |
| Anthracycline or bendamustine, n (%)   | 67 (99)  |  |  |
| Anthracycline                          | 49 (72)  |  |  |
| Bendamustine                           | 37 (54)  |  |  |
| BTKi, n (%)                            | 68 (100) |  |  |
| Ibrutinib                              | 58 (85)  |  |  |
| Acalabrutinib                          | 16 (24)  |  |  |
| Both                                   | 6 (9)    |  |  |
| Relapsed/refractory subgroup, n (%)    |          |  |  |
| Relapsed after autologous SCT          | 29 (43)  |  |  |
| Refractory to last prior therapy       | 27 (40)  |  |  |
| Relapsed after last prior therapy      | 12 (18)  |  |  |
| BTKi relapsed/refractory status, n (%) | 68 (100) |  |  |
| Refractory to BTKi                     | 42 (62)  |  |  |
| Relapsed on BTKi                       | 18 (26)  |  |  |
| Relapsed after BTKi                    | 5 (7)    |  |  |
| Intolerant to BTKi <sup>+</sup>        | 3 (4)    |  |  |

**brexucabtagene autoleucel (**KTE-X19, brexu-cel) was successfully manufactured for 71 patients (96%) and administered to 68 patients (92%)

Median time from leukapheresis to delivery of KTE-X19 to the study site was 16 days



The NEW ENGLAND JOURNAL of MEDICINE

Wang M. J. et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma N Eng J Med, April 2020



# Aberrant expression of CD10 and BCL6 in mantle cell lymphoma

Marco Pizzi,<sup>1</sup> Claudio Agostinelli,<sup>2</sup> Simona Righi,<sup>2</sup> Anna Gazzola,<sup>2</sup> Claudia Mannu,<sup>2</sup> Francesca Galuppini,<sup>1</sup> Matteo Fassan,<sup>1</sup> Andrea Visentin,<sup>3</sup> Francesco Piazza,<sup>3</sup> Gianpietro C Semenzato,<sup>3</sup> Massimo Rugge<sup>1</sup> & Elena Sabattini<sup>2</sup>

## CD5-negative Mantle Cell Lymphoma

### Clinicopathologic Correlations and Outcome in 58 Patients

Yuan Miao, MD, PhD,\*† Pei Lin, MD,\* Annapurna Saksena, MD,\* Jie Xu, MD, PhD,\* Michael Wang, MD,‡ Jorge Romaguera, MD,‡ C. Cameron Yin, MD, PhD,\* L. Jeffrey Medeiros, MD,\* and Shaoying Li, MD\* (Am J Surg Pathol 2019;00:000–000)

# CD23 expression in mantle cell lymphoma is associated with CD200 expression, leukemic non-nodal form, and a better prognosis $\overset{\circ}{\sim}, \overset{\circ}{\sim} \overset{\circ}{\sim}$



Annapurna Saksena MD<sup>a,b</sup>, C. Cameron Yin MD, PhD<sup>a</sup>, Jie Xu MD, PhD<sup>a</sup>, Jingyi Li MD<sup>a,c</sup>, Jiehao Zhou MD, PhD<sup>d</sup>, Sa A. Wang MD<sup>a</sup>, Pei Lin MD<sup>a</sup>, Guilin Tang MD, PhD<sup>a</sup>, Lifu Wang MD<sup>a,e</sup>, Michael Wang MD<sup>f</sup>, Roberto N. Miranda MD<sup>a</sup>, L. Jeffrey Medeiros MD<sup>a</sup>, Shaoying Li MD<sup>a,\*</sup>

#### LYMPHOID NEOPLASIA

# CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1<sup>-</sup> mantle cell lymphoma

David Martín-Garcia,<sup>1,2,\*</sup> Alba Navarro,<sup>1,2,\*</sup> Rafael Valdés-Mas,<sup>3</sup> Guillem Clot,<sup>1,2</sup> Jesús Gutiérrez-Abril,<sup>3</sup> Miriam Prieto,<sup>1,2</sup> Inmaculada Ribera-Cortada,<sup>4</sup> Renata Woroniecka,<sup>5</sup> Grzegorz Rymkiewicz,<sup>6</sup> Susanne Bens,<sup>7,8</sup> Laurence de Leval,<sup>9</sup> Andreas Rosenwald,<sup>10,11</sup> Judith A. Ferry,<sup>12</sup> Eric D. Hsi,<sup>13</sup> Kai Fu,<sup>14,15</sup> Jan Delabie,<sup>16,17</sup> Dennis Weisenburger,<sup>18</sup> Daphne de Jong,<sup>19</sup> Fina Climent,<sup>20</sup> Sheila J. O'Connor,<sup>21</sup> Steven H. Swerdlow,<sup>22</sup> David Torrents,<sup>23,24</sup> Sergi Beltran,<sup>25</sup> Blanca Espinet,<sup>26,27</sup> Blanca González-Farré,<sup>2,28</sup> Luis Veloza,<sup>28</sup> Dolors Costa,<sup>2,28</sup> Estella Matutes,<sup>28</sup> Reiner Siebert,<sup>7,8</sup> German Ott,<sup>29,30</sup> Leticia Quintanilla-Martinez,<sup>31</sup> Elaine S. Jaffe,<sup>32</sup> Carlos López-Otín,<sup>2,3</sup> Itziar Salaverria,<sup>1,2</sup> Xose S. Puente,<sup>2,3,†</sup> Elias Campo,<sup>1,2,28,33,†</sup> and Sílvia Beà<sup>1,2,†</sup>

(Blood. 2019;133(9):940-951)

# Insights into the mechanisms underlying aberrant SOX11 oncogene expression in mantle cell lymphoma

Roser Vilarrasa-Blasi (D<sup>1,2</sup><sup>\vee</sup>, Núria Verdaguer-Dot<sup>1</sup>, Laura Belver<sup>3,4</sup>, Paula Soler-Vila<sup>5</sup>, Renée Beekman<sup>1</sup>, Vicente Chapaprieta (D<sup>1</sup>, Marta Kulis<sup>1</sup>, Ana C. Queirós<sup>1</sup>, Maribel Parra (D<sup>4</sup>, María José Calasanz (D<sup>6,7</sup>, Xabier Agirre (D<sup>6,7</sup>, Felipe Prosper (D<sup>6,7,8</sup>, Sílvia Beà<sup>1,2,7</sup>, Dolors Colomer (D<sup>1,2,7</sup>, Marc A. Marti-Renom<sup>5,9</sup>, Adolfo Ferrando (D<sup>3</sup>, Elías Campo (D<sup>1,2,7</sup> and José Ignacio Martin-Subero (D<sup>1,2,7,9</sup>)

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Leukemia (2022) 36:583-587; https://doi.org/10.1038/s41375-021-01389-w



VOLUME 34 · NUMBER 12 · APRIL 20, 2016

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Prognostic Value of Ki-67 Index, Cytology, and Growth Pattern in Mantle-Cell Lymphoma: Results From Randomized Trials of the European Mantle Cell Lymphoma Network

Ewa Hoster, Andreas Rosenwald, Françoise Berger, Heinz-Wolfram Bernd, Sylvia Hartmann, Christoph Loddenkemper, Thomas F.E. Barth, Nicole Brousse, Stefano Pileri, Grzegorz Rymkiewicz, Roman Kodet, Stephan Stilgenbauer, Roswitha Forstpointner, Catherine Thieblemont, Michael Hallek, Bertrand Coiffier, Ursula Vehling-Kaiser, Réda Bouabdallah, Lothar Kanz, Michael Pfreundschuh, Christian Schmidt, Vincent Ribrag, Wolfgang Hiddemann, Michael Unterhalt, Johanna C. Kluin-Nelemans, Olivier Hermine, Martin H. Dreyling, and Wolfram Klapper







### Variable Expression of Proliferation Signature Genes in Mantle Cell Lymphoma





Rosenwald A et LLMPP, Cancer Cell 2003; 3(2):185-97.



Virchows Arch. 2020 August; 477(2): 259-267. doi:10.1007/s00428-020-02750-7.

# Reproducibility of histologic prognostic parameters for mantle cell lymphoma: cytology, Ki67, p53 and SOX11

Giorgio A. Croci<sup>1,2</sup>, Eva Hoster<sup>3,4</sup>, Sílvia Beà<sup>5,6</sup>, Guillem Clot<sup>5,6</sup>, Anna Enjuanes<sup>5,6</sup>, David W. Scott<sup>7</sup>, José Cabeçadas<sup>8</sup>, Luis Veloza<sup>9</sup>, Elias Campo<sup>5,6,9</sup>, Erik Clasen-Linde<sup>10</sup>, Rashmi S. Goswami<sup>11</sup>, Lars Helgeland<sup>12</sup>, Stefano Pileri<sup>13</sup>, Grzegorz Rymkiewicz<sup>14</sup>, Sarah Reinke<sup>1</sup>, Martin Dreyling<sup>4</sup>, Wolfram Klapper<sup>1</sup>

| MCL*              |                      |  |  |  |
|-------------------|----------------------|--|--|--|
| Conventional      | Leukemic<br>nonnodal |  |  |  |
| Naive B-cell–like | Memory B-cell-like   |  |  |  |
| Unexperienced†    | Experienced†         |  |  |  |
| Naive-like        | Memory-like          |  |  |  |
| 98.7 (±2.6)†      | 95.1 (±1.5)†         |  |  |  |
| IGHV4-34          | IGHV4-34             |  |  |  |
| IGHV5-51          | IGHV5-51             |  |  |  |
| IGHV3-21          | IGHV1-8              |  |  |  |
| IGHV3-23          | IGHV4-59             |  |  |  |
|                   |                      |  |  |  |
| ATM, CDKN2A del   | CCND1, TLR2          |  |  |  |

#### LYMPHOID NEOPLASIA

# Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing

Prasath Pararajalingam,<sup>1,\*</sup> Krysta M. Coyle,<sup>1,\*</sup> Sarah E. Arthur,<sup>1</sup> Nicole Thomas,<sup>1</sup> Miguel Alcaide,<sup>1</sup> Barbara Meissner,<sup>2,3</sup> Merrill Boyle,<sup>2,3</sup> Quratulain Qureshi,<sup>1</sup> Bruno M. Grande,<sup>1</sup> Christopher Rushton,<sup>1</sup> Graham W. Slack,<sup>2,3</sup> Andrew J. Mungall,<sup>4</sup> Constantine S. Tam,<sup>5,6</sup> Rishu Agarwal,<sup>5</sup> Sarah-Jane Dawson,<sup>5,6</sup> Georg Lenz,<sup>7</sup> Sriram Balasubramanian,<sup>8</sup> Randy D. Gascoyne,<sup>2,3</sup> Christian Steidl,<sup>2,3</sup> Joseph Connors,<sup>2,3</sup> Diego Villa,<sup>2,3</sup> Timothy E. Audas,<sup>1</sup> Marco A. Marra,<sup>2,3</sup> Nathalie A. Johnson,<sup>9</sup> David W. Scott,<sup>2,3</sup> and Ryan D. Morin<sup>1,4</sup>

<sup>1</sup>Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; <sup>2</sup>BC Cancer Centre for Lymphoid Cancer and <sup>3</sup>BC Cancer Research Centre, Vancouver, BC, Canada; <sup>4</sup>Michael Smith Genome Sciences Centre, Vancouver, BC, Canada; <sup>5</sup>Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; <sup>6</sup>University of Melbourne, Melbourne, VIC, Australia; <sup>7</sup>Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany; <sup>8</sup>Janssen Research and Development, San Diego, CA; and <sup>9</sup>Department of Medicine, Jewish General Hospital, Montreal, QC, Canada

#### KEY POINTS

- RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, HNRNPH1, are frequently mutated in MCL.
- Most somatic HNRNPH1 mutations are intronic and disrupt regulation of HNRNPH1 through alternative splicing.

Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of *TP53* and *NOTCH1* mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the *HNRNPH1*gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of *HNRNPH1* isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism,

thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology. (*Blood*. 2020;136(5):572-584)



# Circulating tumor DNA predicts therapeutic outcome in mantle cell lymphoma

Rahul Lakhotia,<sup>1</sup> Christopher Melani,<sup>1</sup> Kieron Dunleavy,<sup>2</sup> Stefania Pittaluga,<sup>3</sup> Nakhle Saba,<sup>4</sup> Liza Lindenberg,<sup>5</sup> Esther Mena,<sup>5</sup> Ethan Bergvall,<sup>6</sup> Andrea Nicole Lucas,<sup>7</sup> Allison Jacob,<sup>8</sup> Erik Yusko,<sup>8</sup> Seth M. Steinberg,<sup>9</sup> Elaine S. Jaffe,<sup>3</sup> Adrian Wiestner,<sup>10</sup> Wyndham H. Wilson,<sup>1,\*</sup> and Mark Roschewski<sup>1,\*</sup>

26 APRIL 2022 · VOLUME 6, NUMBER 8



2667

# Zanubrutinib in relapsed/refractory mantle cell lymphoma: long-term efficacy and safety results from a phase 2 study

Yuqin Song,<sup>1</sup> Keshu Zhou,<sup>2</sup> Dehui Zou,<sup>3</sup> Jianfeng Zhou,<sup>4</sup> Jianda Hu,<sup>5</sup> Haiyan Yang,<sup>6</sup> Huilai Zhang,<sup>7</sup> Jie Ji,<sup>8</sup> Wei Xu,<sup>9</sup> Jie Jin,<sup>10</sup> Fangfang Lv,<sup>11</sup> Ru Feng,<sup>12</sup> Sujun Gao,<sup>13</sup> Haiyi Guo,<sup>14</sup> Lei Zhou,<sup>15</sup> Jane Huang,<sup>16</sup> William Novotny,<sup>16</sup> Pil Kim,<sup>16</sup> Yiling Yu,<sup>14</sup> Binghao Wu,<sup>14</sup> and Jun Zhu<sup>1</sup>

#### **KEY POINTS**

- Zanubrutinib demonstrated deep and durable responses and a favorable safety profile in R/R MCL at median 35.3 months follow-up.
- Zanubrutinib provided a high response rate (84% [78% CR]) and extended PFS (median 33.0 months) in patients with R/R MCL.



### Genomic and Gene Expression Profiling Defines Indolent Forms of Mantle Cell Lymphoma

Verònica Fernàndez<sup>1</sup>, Olga Salamero<sup>2</sup>, Blanca Espinet<sup>3</sup>, Francesc Solé<sup>3</sup>, Cristina Royo<sup>1</sup>, Alba Navarro<sup>1</sup>, Francisca Camacho<sup>4</sup>, Sílvia Beà<sup>1</sup>, Elena Hartmann<sup>5</sup>, Virginia Amador<sup>1</sup>, Luis Hernández<sup>1</sup>, Claudio Agostinelli<sup>6</sup>, Rachel L. Sargent<sup>7</sup>, Maria Rozman<sup>1</sup>, Marta Aymerich<sup>1</sup>, Dolors Colomer<sup>1</sup>, Neus Villamor<sup>1</sup>, Steven H. Swerdlow<sup>7</sup>, Stefano A. Pileri<sup>6</sup>, Francesc Bosch<sup>2</sup>, Miguel A. Piris<sup>4</sup>, Emili Montserrat<sup>2</sup>, German Ott<sup>8</sup>, Andreas Rosenwald<sup>5</sup>, Armando López-Guillermo<sup>2</sup>, Pedro Jares<sup>1</sup>, Sergi Serrano<sup>3</sup>, and Elías Campo<sup>1</sup>

Molecular and Cellular Pathobiology

Cancer Research

### Molecular Subsets of Mantle Cell Lymphoma Defined by the *IGHV* Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features

Alba Navarro<sup>1</sup>, Guillem Clot<sup>1</sup>, Cristina Royo<sup>1</sup>, Pedro Jares<sup>1</sup>, Anastasia Hadzidimitriou<sup>4</sup>, Andreas Agathangelidis<sup>4,5</sup>, Vasilis Bikos<sup>4</sup>, Nikos Darzentas<sup>4</sup>, Theodora Papadaki<sup>7</sup>, Itziar Salaverria<sup>1,8</sup>, Magda Pinyol<sup>1</sup>, Xavier Puig<sup>2</sup>, Jara Palomero<sup>1</sup>, Maria Carmela Vegliante<sup>1</sup>, Virgina Amador<sup>1</sup>, Alejandra Martinez-Trillos<sup>1</sup>, Lenka Stefancikova<sup>12</sup>, Adrian Wiestner<sup>13</sup>, Wyndham Wilson<sup>13</sup>, Christiane Pott<sup>9</sup>, Maria Jose Calasanz<sup>3</sup>, Nicola Trim<sup>14</sup>, Wendy Erber<sup>15</sup>, Birgitta Sander<sup>16</sup>, German Ott<sup>10</sup>, Andreas Rosenwald<sup>11</sup>, Dolors Colomer<sup>1</sup>, Eva Giné<sup>1</sup>, Reiner Siebert<sup>8</sup>, Armando Lopez-Guillermo<sup>1</sup>, Kostas Stamatopoulos<sup>4,6</sup>, Sílvia Beà<sup>1</sup>, and Elías Campo<sup>1</sup>



|                                                    | cMCL<br>(n=15) | iMCL<br>(n=12) | P<br>value |
|----------------------------------------------------|----------------|----------------|------------|
| B symptoms (%)                                     | 33             | 0              | 0.03       |
| Non-ambulatory performance<br>status<br>ECOG≥2 (%) | 70             | 0              | 0.01       |
| Nodal presentation (lymph<br>nodes >1 cm) (%)*     | 93             | 17             | <0.001     |
| High serum LDH* (%)                                | 46             | 0              | 0.03       |
| Intermediate or high-risk MIPI                     | 46             | 0              | 0.016      |
| Morphology                                         | 13             | 67             | 0.007      |
| Small cell (%)                                     | 74             | 33             |            |
| Classical<br>Blastoid                              | 13             | -              |            |
| IGHV gene hypermutations (>5%)                     | 20             | 70             | < 0.04     |
| Genomic Profile                                    |                |                |            |
| 1.imbalance                                        | 13             | 100            | <0.001     |
| ≥ 2 imbalances                                     | 87             | 0              |            |
| Chemotherapy at any time (%)                       | 100            | 17             |            |
| Dead patients (%)                                  | 47             | 0              | <0.001     |
| 5-year overall survival (%)                        | 49             | 100            | 0.03       |







# LNMCL shows a specific gene signature and SOX11 negativity







|                                                   |              | L.         | P value     |              |           |
|---------------------------------------------------|--------------|------------|-------------|--------------|-----------|
| Variable                                          | Total        | cMCL       | nnMCL       | Undetermined | vs nnMCL) |
| Number of cases (%)                               | 70           | 39 (56)    | 26 (37)     | 5 (7)        |           |
| Follow-up data                                    |              |            |             |              |           |
| Median follow-up, mo                              | 43           | 35         | 88          | 30           | .019      |
| Mean time from diagnosis to<br>sample (range), mo | 16.6 (0-185) | 2.8 (0-36) | 36 (0-185)  | 22.8 (0-92)  | .002      |
| Dead patients, n (%)                              | 24/70 (34)   | 16/39 (41) | 7/26 (27)   | 1/5 (20)     | .296      |
| Treated at 3 y from diagnosis,<br>% (95% Cl)      | 65 (51-75)   | 88 (70-96) | 31 (9-48)   | 47 (0-79)    | <.001     |
| Treated at 3 y from sampling,<br>% (95% Cl)       | 71 (57-80)   | 89 (73-96) | 44 (19-62)  | 47 (0-79)    | <.001     |
| 3-y OS, diagnosis, % (95% CI)                     | 78 (69-89)   | 69 (55-86) | 92 (81-100) | 80 (52-100)  | .006      |
| 3-y OS, sampling, % (95% CI)                      | 72 (61-85)   | 68 (53-86) | 79 (62-100) | 80 (52-100)  | .379      |



# *In-situ* mantle cell lymphoma—a report of two cases

2008 Blackwell Publishing Ltd, Histopathology, 52, 239–262.

N Aqel F Barker K Patel K N Naresh

Departments of Histopathology and Haematology, Northwick Park Hospital, Hillingdon Hospital & Hammersmith Hospital, London, UK

### *In situ* mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior

by Alejandra Carvajal-Cuenca, Luz F. Sua, Nhora M. Silva, Stefania Pittaluga, Cristina Royo, Joo Y. Song, Rachel L. Sargent, Blanca Espinet, Fina Climent, Samuel A. Jacobs, Jan Delabie, Kikkeri N. Naresh, Adam Bagg, Pierre Brousset, Roger A. Warnke, Sergi Serrano, Nancy Lee Harris, Steven H. Swerdlow, Elaine S. Jaffe, and Elias Campo

Haematologica 2011 [Epub ahead of print]





### LN with Cyclin D1+ In Situ Pattern

### SOX11 negative

May be CD5 negative Rare event: <1% of LNs Low risk of Progression (<10%)

### SOX11 positive

More often CD5 positive Higher risk of progression Similar pattern can be seen at relapse or at distant sites

#### Letter to the Editor Leukemia 23, 1190-1193 (June 2009) | doi:10.1038/leu.2009.31

# t(11;14)-positive clones can persist over a long period of time in the peripheral blood of healthy individuals.

Y Lecluse, P Lebailly, S Roulland, A-C Gac, B Nadel and P Gauduchon

#### Abstract

Several lymphoma- and leukaemia-associated chromosomal translocations are present in the peripheral blood of healthy individuals (HI). Translocation t(14;18), the genetic hallmark of follicular lymphoma (FL) that juxtaposes the BCL2 proto-oncogene near the immunoglobulin heavy chain (IGH) locus, can be detected in most HI at highly variable frequency.

